$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(2 a_{1}+(n-1) d\right) \quad \text { كدام استi } \frac{a_{r_{0}}}{a_{1}} \text {. } \\
& a_{n}=a_{1}+(n-1) d \\
& \frac{x\left(2 a_{1}+12 d\right)}{x /}=4 \quad \frac{r q}{19} \pi \quad \frac{a_{1}+19 d}{a_{1}+9 d}=\frac{a_{1}+38 a_{1}}{a_{1}+18 a_{1}} \\
& 8\left(2 a_{1}+2 d\right) \\
& =\frac{39 a_{1}}{19 a_{1}}=\frac{39}{12} \\
& 4 a_{1}+18 d=2 a_{1}+10 d \\
& 2 a_{1}=d \\
& \text { r-r } \\
& \frac{-\Delta}{4 a}=0 \\
& \begin{array}{c}
\frac{\alpha^{2}+\frac{\alpha^{2}+\beta^{2}}{s^{2}-2 p}}{4 \alpha^{2}+6} 11-\lambda \sqrt{r} \\
4-\lambda \sqrt{r}
\end{array} \\
& 12-8 \sqrt{2}+6=18-8 \sqrt{2} \\
& 10+3 \sqrt{x}=x \rightarrow x \geqslant 0 \\
& \sqrt{x}=\frac{x-10}{3} \rightarrow x \geqslant 10 \\
& x=\frac{x^{2}-20 u+100}{2} \\
& \rightarrow x^{2}-29 n+100=0 \\
& \left.\begin{array}{l}
S=29 \\
p=100
\end{array}\right\} \begin{array}{l}
\alpha=4 \\
\beta=25
\end{array} \\
& \begin{array}{l}
n^{2}-4=0 \\
\rightarrow n= \pm 2
\end{array} \\
& \rightarrow \underset{1}{ }+\ldots \\
& \text { جند جواب 0ارد9 } \\
& x\left(x^{2}+3 u+5\right)=0 \\
& x=0 \\
& \text { O) } \begin{array}{l}
\alpha, \beta=\frac{2 \pm \sqrt{8}}{2}=\frac{2 \pm 2 \sqrt{2}}{2} \quad 1 A+1 \sqrt{r} \text { (1) } \\
\begin{array}{l}
\alpha=1-\sqrt{2} \\
\beta=1+\sqrt{2} \\
\alpha^{2}=3-2 \sqrt{2}
\end{array}
\end{array} \\
& S=2, P=-1
\end{aligned}
$$

$$
\begin{align*}
& x \geqslant 0 \\
& \frac{1}{x^{3}+3 x^{2}+5 x}=\frac{1}{x^{3}+2} \\
& x=-2, \frac{1}{3},+2 \tag{rict}\\
& \Delta=4, \quad x=\frac{-5 \pm 7}{6} \\
& \longrightarrow 3 x^{2}+5 x-2=0
\end{align*}
$$

$$
180-\frac{159-21}{180}=0 \quad 80-106.21 \neq 0
$$

$$
\begin{aligned}
& \text { BC: } y=\frac{1}{3} x+1 \\
& A H: y=-3 x+9
\end{aligned}
$$

$$
\rightarrow 8=\left(3+\frac{1}{3}\right) u=\frac{10}{3} u \rightarrow n=\frac{2 u}{10}=2 \cdot 4
$$

$$
\begin{aligned}
& a=1 \rightarrow A=\{(1,1),(b, 4)\}, B \\
& b=2, c=1 \\
& a=0 \quad A=\{(1,0),(b, 4)\} \\
& B=\{(2,3)(c, 1)\}
\end{aligned}
$$

$$
\begin{aligned}
& a=-1 \\
& A=\{(1,-1)(b, 4)\}
\end{aligned}
$$

$$
B=\{(2.2)(c .1)\}
$$

$$
\begin{aligned}
& {[4-x]+\lfloor x-3] \neq 0} \\
& \lfloor x+u\rfloor=\lfloor n\rfloor+a, a \in \mathbb{Z} \\
& \lfloor-x\rfloor+4+\lfloor x\rfloor=3 \\
& =\langle x\rfloor+\lfloor-x\rfloor+1 \neq 0 \\
& 0=\lfloor x \mid+\lfloor-x\rfloor \neq-1 \\
& |x|+|-n|=\left\{\begin{array}{cc}
0 & x \in Z \\
-1 & x \in Z
\end{array}\right. \\
& x \in \mathbb{Z}
\end{aligned}
$$

$$
\begin{aligned}
& t_{A}=2 \bar{t}_{B}+1, \bar{t}_{B}=x \\
& t_{A B}=2 h+\frac{1}{10} h=\frac{21}{10} h{ }_{\text {9⿵冂 }} \\
& \frac{1}{t_{A B}}=\frac{1}{t_{A}}+\frac{1}{t_{B}} \quad t_{A}=7 h \quad x=2 \text { ar } \alpha \\
& \begin{array}{c}
n=3 n=\frac{-7}{20} \alpha \quad \begin{array}{c}
2 n+1 i=r i d \\
n=1 \\
-0 n^{2}-53 n-21=0
\end{array} \quad n=3
\end{array}
\end{aligned}
$$

$$
f(x)=4=-2 x \rightarrow u=2-\frac{f(x)}{2} \quad \text { كآ }
$$ $f(x)=a x+b$

$$
\begin{aligned}
& D_{\frac{f}{g}}=D_{f} \cap D_{g}-\left\{\left.n\right|^{\prime \prime}(x)=0\right\} \\
& D_{f}=(-\infty, 0] \cup[1,+\infty) y=\sqrt{\frac{x^{r}-x}{x^{r}-1}} \\
& D g=(-\infty,-1] \cup[1,+\infty) \\
& g(x)=0 \rightarrow x= \pm 1 \\
& \frac{f}{g}=(-\infty,-1) \cup(1,+\infty) \\
& \left(\sqrt{\frac{x}{x}}\right) \\
& \frac{f}{g}=\frac{\sqrt{x^{2}-x}}{\sqrt{x^{2}-1}}=\sqrt{0}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
f^{-1}(x)=\frac{x-b}{a} \\
f^{-1}(x)=\frac{x+2}{3}
\end{array}\left\{\begin{array}{l}
f(x)=r x-r \\
g(x)=\frac{1}{r} x+r
\end{array}\right. \\
& \begin{array}{l}
y=\sqrt[3]{x}-1 \\
y+1=\sqrt[3]{x}
\end{array}\left\{\begin{array}{l}
f(x)=\sqrt[r]{x}-1 \\
g(x)=x^{r}+1
\end{array}\right. \\
& x=(y+1)^{3} \rightarrow f^{-1}(x)=(x+1)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{1}{2} \sqrt{n+3} \\
& f(x)=\frac{1}{r} \sqrt{x+r} \\
& \longrightarrow y^{2}=\frac{1}{4}(4+3) \\
& x=4 y^{2}-3 \\
& g(x)=r x^{r}-r(x \geq 0) \\
& \frac{f^{-1}(x): 4 x^{2}-3}{y=x^{2}+3} \\
& \left\{\begin{array}{l}
f(x)=x^{r}+\lambda(x \geq 0) \\
u(x)=\sqrt{x-\lambda}
\end{array}\right. \\
& =\sqrt{x} \\
& y-8=x^{2} \rightarrow x= \pm \sqrt{y-8} \rightarrow f^{-1}(x)= \pm \sqrt{x-8}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8}{2}=4 \\
& \text { Tr: + + Cr }
\end{aligned}
$$

$$
\begin{array}{lll}
\begin{array}{l}
2 g(x)-3=5 \\
g(x)=4 \\
-
\end{array} & x^{2}-x+2=4 \\
& \longrightarrow x^{2}-x-2=0 \\
& \longrightarrow x=-1
\end{array}
$$

$$
\begin{aligned}
& D_{f_{0 y}}=\left\{x \in D_{y} \mid g(x) \in D_{f}\right\}=(-\infty, 1) \\
& D_{y}=\mathbb{R} \\
& g(x)<0 \\
& \operatorname{RR} \cap x<1 \\
& \stackrel{x^{3}+1<0}{x-1} \rightarrow x \rightarrow-1 \\
& \rightarrow \text { (}<-1 \sqrt{n-n^{2}}<\cdot \alpha \\
& \rightarrow(-\infty, 1) \quad D_{y}=\mathbb{\pi} \sqrt{x-1}+0 \\
& x<-1 \sqrt[3]{x+1}<0
\end{aligned}
$$

$$
\begin{aligned}
& 2^{2 x}+2^{-2 x}=\left(2^{n}+2^{-4}\right)^{2}-2 \\
& f(x)=g \circ h(x)=0 \\
& \text { of } x^{2}+\frac{1}{x^{2}}-x-\frac{1}{x}=0 \\
& =0 \\
& 2^{n}=1=x n=0 \\
& h(x)=2^{x} \\
& g(x)=x^{2}+x^{-2}-\left(x+x^{-1}\right) \\
& x^{2}-x=\frac{1}{x}-\frac{1}{x^{2}} \\
& \rightarrow x^{4}-x^{3}=x-1 \\
& x=1 \frac{2}{2} \\
& \rightarrow x^{3}(x-1)=x-1 \\
& n-1=0 \\
& f \circ g(x)=0 \quad \text { simin }
\end{aligned}
$$

$$
\begin{aligned}
& 3^{-x+2}=3^{2 x-1}
\end{aligned}
$$

