

$$
\begin{aligned}
& t k=\wedge \Rightarrow k=r \\
& n\left(A^{\prime}\right)=r+r k=c+\varepsilon=v
\end{aligned}
$$

$$
\frac{r g}{a_{r}} \quad 1-q^{r}
$$

$$
-r r a^{-r}-r a^{r} r \rightarrow r-r-r a^{r} r
$$

$$
\begin{aligned}
& \frac{r}{r}=\frac{\frac{1 g}{a_{r}}}{r \gamma}=\frac{1-q^{r}}{q^{r}-1} \Rightarrow r-r q^{-r}=r q^{r}-r \Rightarrow r-\frac{r}{q^{r}}=r q^{r} r \\
& \underline{r}\left(q^{r}\right)^{r}-0 q^{r}+r=\cdot \stackrel{0}{=}=10 q \cdot\left\{\begin{array}{l}
q^{r}=1 x \\
q^{r}=\frac{r}{\mu} \rightarrow q= \pm \sqrt{\frac{r}{r}}
\end{array}\right. \\
& \left.t_{1}=a_{1} \Rightarrow \Delta=\frac{a_{r}}{q^{r}}=\frac{a_{r}}{\frac{r}{r}} \Rightarrow a_{c}=\frac{10}{\mu} \right\rvert\, \Rightarrow \underbrace{a_{c}-a_{1}=r d}_{0} \\
& \partial=\frac{-0}{9}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\omega}{\mu}=\frac{10}{\mu}-\frac{10}{\mu}=r \partial
\end{aligned}
$$

$$
\begin{aligned}
& t_{x}+V x=11 x=\frac{K}{V} \Rightarrow \sin V x=\cos t x \\
& =\frac{\left(\sin ^{2} \Delta x+\cos ^{2} \alpha x\right)}{\frac{1}{\cos ^{2} \delta x}} \times \frac{r \sin \varepsilon_{x}}{\cos ^{t} x}=\frac{\cos ^{2} t x x \times r \sin \varepsilon_{x}}{\cos 8 x} \\
& =r \sin \varepsilon x \cos \delta x=\sin 1 x
\end{aligned}
$$

$$
H H^{\prime}=A H^{\prime \prime} \quad A H^{\prime \prime}=\frac{H_{x} \sqrt{r}}{r}=r \sqrt{r} \Rightarrow H^{\prime}=r \sqrt{r^{\prime}}
$$

$$
\frac{T(V)}{r / \Delta(t)}
$$

$\sin ^{r} x=1-\cos ^{r} x$

$$
S=x_{1}+x_{r}=-\frac{-1}{1}=1 \quad, \quad P=x_{1} x_{c}=\frac{-r}{1}=-r
$$

$$
\begin{aligned}
& f(x)=1-\cos ^{r} x+\cos ^{6} x=\left(\cos ^{r} x\right)^{r}-\cos ^{r} x+1=t^{r}-t+1 \\
& \begin{array}{l}
t_{s}=-\frac{-1}{r}=\frac{1}{r}=\cos ^{r} x \Rightarrow f\left(\cos ^{s} x=\frac{1}{r}\right)=\underbrace{\frac{1}{r}+1}_{-\frac{1}{\varepsilon}+\frac{1}{r}+1}= \\
\cos ^{2} x-1 \Rightarrow f\left(\cos ^{2} x=1\right)=1-1+1=1
\end{array} \\
& \cos ^{2} x-1 \Rightarrow f\left(\cos ^{2} x=1\right)=1-1+1=1 \\
& \cos x=16 \lambda
\end{aligned}
$$

$$
\begin{aligned}
& S=x_{1}+x_{r}=-\frac{-1}{r}=1 \quad, \quad P=x_{1} \lambda_{r}=\frac{-r}{1}=-r \\
& f(1) \times f(-r)=(1-r-c)(a+c-r)=-c_{x} a=-r v
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\sin a=\frac{r}{q}=\frac{1}{r} \sqrt{r} \\
\sin a=\frac{\gamma 1}{a}=\frac{v}{\mu} \bar{v} \dot{\sigma} \varepsilon
\end{array}\right.
$$

$$
\left.\Rightarrow \int r a+b=r\right\}
$$

$$
\begin{aligned}
& \left\{a_{n}\right\}=a_{n}{ }^{5}+b_{n}+c \\
& \text { Ma.ct } \\
& a_{1}=a+b+c=0 \\
& a_{r}=r+a_{1}=r+\cdots=r=r a+r b+c=r \text { ? } \\
& a_{c}=t+a_{e}=t+r=4=9 a+r b+c=4 \Leftrightarrow \Leftrightarrow a+b=t
\end{aligned}
$$

$$
\begin{aligned}
& \cos ^{5} a=1-\left(\frac{1}{a}\right)=\frac{n}{a} \\
& \frac{r}{r v} \text { ए } y_{x} \\
& x=\frac{r}{r} \Rightarrow \frac{r}{a}-\frac{r}{r} \sin a-\frac{1}{\varepsilon} \cos ^{5} a=0 \Rightarrow\left(\frac{f}{a}-\frac{r}{r} \sin a-\frac{1-\sin ^{r} a}{\epsilon}\right)=0 \\
& \Rightarrow 14-r+\sin a-9+9 \sin ^{r} a=0 \Rightarrow \underline{9} \sin ^{r} a-r \sin a+V=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
\varepsilon a+r b+c=r \\
a+b+c=a
\end{array}\right\} \Rightarrow r a+b=r * * \Rightarrow\left\{\begin{array}{l}
r a+b=r \\
a a+b=\varepsilon
\end{array}\right\} \Rightarrow \begin{array}{l}
r a=r \\
a=1
\end{array} \\
& a_{n}=n^{c}-n=n(n-1) \Rightarrow \\
& a_{1.0}=1.0(99)=9900
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow X\left(n^{2}-n^{2}+r\right)=0 \rightarrow \Delta=14-\lambda=\lambda \rightarrow \sqrt{\Delta}=r \Omega \\
& x_{1}=\frac{r+r \sqrt{r}}{r}=\frac{r+\sqrt{r}\rangle r,}{r=r \varepsilon}, x_{r}=\frac{t-r \sqrt{r}}{r}=r-\sqrt{r}
\end{aligned}
$$

$$
\begin{aligned}
& f(\sqrt{x}+1)+f\left(\frac{1}{\sqrt{x}+1}\right) \\
& \Rightarrow f\left(\frac{1}{x}\right)=7 \frac{1}{\frac{1+\frac{1}{2}}{\frac{x+1}{x}}}+\frac{c}{\frac{1}{\frac{1}{x} \frac{1}{x^{2}+1}} x^{c}}+\frac{0}{\frac{1+\frac{1}{x^{0}}}{\frac{x^{0}+1}{x^{0}}}}+\frac{v}{1+\frac{1}{x^{2}}}+\frac{9}{1+\frac{1}{x^{a}}} \\
& \Rightarrow f\left(\frac{1}{-}\right)=1 x+v x^{v} d x^{0} . V x^{v}=a x^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f\left(\frac{1}{x}\right)=\frac{1 x}{1+x}+\frac{v x^{2}}{1+x^{0}}+\frac{x^{\omega}}{d+x^{0}}+\frac{V x^{v}}{1+x^{0}}+\frac{a x^{4}}{1+x^{4}} \\
& f(x)+f\left(\frac{1}{x}\right)=\frac{x^{2}+2}{x+x}+\frac{\mu\left(x^{2}+1\right)}{x^{2}+1}+\frac{\Delta\left(x^{0}-x\right)}{1+x^{2}}+\frac{V\left(\operatorname{co}^{2}+1\right)}{1+\lambda^{2}}+\frac{q\left(x^{a} / A\right)}{x^{a}}= \\
& f(x)+f\left(\frac{1}{\alpha}\right)=1+c+\infty+r+q=r a \\
& \sin ^{4} \alpha+\cos ^{4} x=1-r \sin ^{4} \alpha \cos ^{5} \alpha \\
& \sin ^{r} \alpha+\operatorname{Cos}^{r} \alpha=1-r \sin ^{r} \alpha \operatorname{Cos}^{r} \alpha \\
& f(n)=1-r \sin ^{r} \alpha \cos ^{r} \alpha+m-r m \sin ^{r} \alpha \cos ^{r} \alpha \\
& f(x)=\dot{\omega} i \Rightarrow-r \sin ^{r} \alpha \cos ^{2} \alpha-\alpha_{m} \sin ^{c} \alpha \cos ^{2} \alpha=0 \\
& -c-r_{m}=0 \rightarrow m=\frac{-v}{r} \\
& f(n)=1+m=1-\frac{c}{r}=-\frac{1}{r} \\
& r^{\frac{n}{r}}=\left(r^{\frac{1}{r}}\right)^{n}=(\sqrt{r})^{n}=r^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{f^{n}-\varepsilon_{n}^{r}}{\varepsilon^{\frac{n}{r}}+r_{n}}=\frac{r^{n}-\varepsilon_{n}^{r}}{r^{n}+r_{n}}=\frac{\left(r^{n}\right)^{r}-\left(r_{n}\right)^{r}}{r^{n}+Y_{n}}=\frac{\left.\left(r^{n}-r_{n}\right) r^{n}+r_{n}\right)}{\frac{r^{n}}{r}} \\
& =r^{n}-r r=14-4 n \Rightarrow n=r
\end{aligned}
$$

$$
\begin{aligned}
& \log _{b} a^{n}=n \log _{b} a
\end{aligned}
$$

$$
\begin{aligned}
& r\left(r^{x+1}-1\right) \quad 4\left(r^{x+1}-1\right) \\
& \log _{r}^{r}+\log _{r} \quad=\log _{r}=\neq \log \\
& \Rightarrow \underbrace{4 \times\left(r \times r^{x}-1\right)}=\left(\lambda \times \frac{1}{r^{x}}+\varepsilon\right) \Rightarrow r^{x}=t \\
& 1 r \times t-4=\frac{\lambda}{t}+r \rightarrow 1 r t-1 \cdot-\frac{\lambda}{t}=\frac{1 r t^{r}-1 \cdot t-\lambda}{t}=\text {. } \\
& 1 R t^{r}-1 . t-1=-\longrightarrow t^{r}-10 t-\Delta x y=0.4(t+4)(t-14)=0 \\
& \left\{\begin{array}{l}
t=r^{x}=\frac{-4}{r}=-\frac{1}{r} \dot{\sigma}^{-} \varepsilon \\
t=r^{x}=\frac{1 r}{r r}=\frac{\varepsilon}{r} v
\end{array} \quad r^{x}=\frac{\varepsilon}{r} \xrightarrow{\log _{r}} \log ^{r}=x=\log _{r}^{r}\right. \\
& \Rightarrow x=\log _{r}^{r}-\log _{r}^{\mu}=r-\log _{p}^{\mu}
\end{aligned}
$$

$$
{ }^{x} A=(1,1)
$$

$$
\begin{aligned}
& S \stackrel{\Delta}{O}=S_{O B A D}+S_{B A F}^{\triangle}+S_{D A E}+S_{A E F} \\
& \frac{1}{r} \times 4 \times \lambda=1+\frac{1}{r} \times 1 \times D+\frac{1}{r} \times 1 \times v+S_{A E F} \\
& K \mu=1+\frac{Y}{r}+\frac{V}{r}+S_{A E F} \Rightarrow K S=V+S_{A E F} \\
& \Rightarrow S_{A} \hat{E} F=V
\end{aligned}
$$

$$
\begin{aligned}
d^{6} S=a^{r}+r y & =S_{A B C}+S_{A F E}+S_{E D C}+S_{A E C} \\
a^{r}+r y & =\frac{a(a+4)}{r}+\frac{a(a-4)}{r}+\frac{4 \times 4}{r}+S_{A E C} \\
a^{r}+r y & =\frac{a^{r}+4 a+a^{r}+a+r y}{r}+S_{A E C} \\
a^{r}+r y & =\frac{r a^{r}+r 4}{r}+S_{A E C} \\
a^{r}+r y & =a^{r}+1 \Lambda+S_{A E C} \Rightarrow S_{A E C}=1 \Lambda 1
\end{aligned}
$$

$$
\begin{aligned}
& r E=10 \quad E(0,1 r) \\
& \Rightarrow S=S_{E A}=V Y=\frac{1}{r} x \times 10 \Rightarrow x=\frac{r \times v q}{10}=\frac{1 \Delta r}{10}=1 \omega / r
\end{aligned}
$$

$$
\begin{aligned}
& S^{r}-r P=(\sin \alpha)^{r}+(\cos \alpha)^{r}=1 \Rightarrow S^{r}=r P+1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{k 9}{50}=\frac{28}{50}+\frac{50}{58}=\frac{\varepsilon q}{5 \gamma} \\
& S^{T} \neq T P+1 \times 2 \times(: r \sin \dot{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\log _{b}^{a} \times \log _{c}^{b}=\log _{c}^{a} c \\
\log _{b}^{b} \times \log _{b}^{c}=\log _{b}^{c}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\log _{d}=+\log _{c}^{2}=\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \left(\log _{1}^{r}\right)^{r} x\left(\log _{\mu}^{x}\right)=\log _{\mu}^{\square} . \\
& 4 \Sigma=r^{r}=\square
\end{aligned}
$$

$$
\begin{aligned}
& \left(\log _{w}^{r}\right)^{\prime} \times\left(\log _{\mu}^{x}\right)=\log _{\mu} \\
& \left(\log _{5}^{\varepsilon}\right)_{x}^{\gamma}\left(\log _{\alpha}^{\varepsilon}\right) \alpha\left(\log _{c}^{\alpha}\right)=\log _{\mu}^{\varepsilon}=\log _{\mu}^{\square} \Rightarrow \log _{\mu}^{r} r^{\mu} \uparrow \log _{\mu} \\
& \log _{\mu}^{x}=t, \log _{e}^{x}=\log _{\mu}^{x}=t t
\end{aligned}
$$

$$
\begin{aligned}
& =t^{r}-\mu t-r=0 \Rightarrow\left\{\begin{array}{l}
t=-1=\log _{\mu}^{x} \Rightarrow \omega^{-1}=\sum_{\frac{1}{\mu}=x_{1}}{ }^{-r(1)} \\
z=\frac{-a}{a}=-\frac{-c}{1}=r^{2}=\log _{\mu}^{x} \Rightarrow x_{i}=\tau v
\end{array}\right. \\
& P=x_{1} x_{5}=\frac{1}{e} \times r s=\underline{9}
\end{aligned}
$$

$A F C: E K \| F C \Rightarrow d^{\prime}: s: m \bar{i}=\frac{A E}{A F}=\frac{E K}{F C}$

$$
\Rightarrow \frac{r}{r+F E}=\frac{r}{\varphi}=\frac{1}{r} \Rightarrow F E=r
$$ $\triangle B F-F C$

$B \overrightarrow{E D}: F C \| E D \Rightarrow{ }^{\text {dijem}}=\frac{B F}{B E}=\frac{F C}{E D}$

$$
\left.=\frac{r}{4}=\frac{4}{E D} \Rightarrow E D=\mu \rightarrow E D=x+r=\mu \rightarrow x=10\right)
$$

,

$$
\begin{aligned}
& \left.S_{F E D}=\frac{1}{r} \times h=\frac{x h}{r}=r \Rightarrow x h=r\right] \quad S_{A B D}^{B}=\frac{1}{r} x^{\mu} x x^{\delta} h=4 x h^{+\delta} \\
& S_{A E F B}=S_{A B D}-S_{F E D}=r \varepsilon-r=r r
\end{aligned}
$$

$$
r+\varepsilon+4+\ldots \ldots+44 \Rightarrow \frac{n(n+1)}{r}=\frac{44 \times 4 v}{r}=4 r_{x} 4 v=44[1 ; 18 .
$$

$$
\begin{aligned}
& \underline{L} \rightarrow\left\{\begin{array}{l}
\frac{r}{v \underline{L}} \times \frac{V}{4} \times \frac{0}{4} \times \frac{r^{6}}{4} \\
\frac{1}{4} \times \frac{4}{6 a} \times \frac{4}{v a} \times \frac{0}{1} \times \frac{5}{1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{n!}{\mu r_{x} r \varepsilon}=r r!\Rightarrow n!=r \varepsilon_{x} \sim \sigma_{x} r r!=r \varepsilon\right] \Rightarrow r \varepsilon=n!
\end{aligned}
$$

$P(A \cap B)=P(A), P(B), P(B)=T V, \quad P(A)=\sqrt{4}$ ctöms Preies

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B)=\pi / 4+0 / V-\cdot / 4 x \cdot 1 V \\
& =\quad / C-d f r=0 / \wedge \wedge
\end{aligned}
$$

sisbeis

$$
\begin{array}{r}
\lim _{x \rightarrow 1^{-}} 9=\lim _{x \rightarrow 1^{+}} 9=r+b=a+1=-r \\
\Rightarrow b=-a
\end{array}
$$

$$
\lim _{x \rightarrow a^{-}}=\lim _{r \rightarrow a^{+}}=a-1=r a+r
$$

$$
a b=-c_{x}-\partial=10
$$

$$
\begin{aligned}
& S=f(x)=\frac{(x+\varepsilon)(n-e+(x+c)}{(x-1)(x+1)}=\frac{(x+c)(x+c)}{x+1} \\
& \lim _{x \rightarrow e} f(n)=\frac{v \times 4}{c}=\frac{E 5}{E}=\frac{r}{r}=1.01
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \log _{r}^{r}} \frac{\left(r^{x}\right)^{r}+4 x r^{x}-14}{\left(r^{x}\right)^{r}-r}=\frac{\left(r^{x}+r\right)\left(e^{2} / r\right)}{\left(r^{x}-r\right)\left(r^{x}+r\right)}=\lim _{x \rightarrow \log _{c}^{r} r^{r^{n}+r}} \frac{r^{n}+1}{\left(r^{2}\right.} \\
& =\frac{e^{\log _{r}^{(r)}}+1}{r^{\log _{c}^{r}+r}=\frac{r^{\log _{c}^{\alpha}}+1}{r \log _{\mu}{ }^{2}+r}=\frac{r+\Lambda}{r+c}=\frac{1-}{\varepsilon}=\frac{\gamma}{r}}
\end{aligned}
$$

$$
w^{\log _{c}^{r}+r}=\overline{r \log _{r}^{r}+r}-\overline{r+c}=\frac{\bar{\varepsilon}}{\varepsilon}=\frac{\bar{r}}{r}
$$

$$
\begin{aligned}
& f(x)=a(x-1)^{r} \Rightarrow f(x)=a(\cdot-1)^{r}=a=\Lambda \\
& \Rightarrow f(x)=\Lambda(x-1)^{r} \\
& \lim _{x \rightarrow 1} \frac{f(x)}{a^{r}(x)}=\lim _{x \rightarrow 1} \frac{\lambda(x-1)^{r}}{\varepsilon(n-1)^{r}}=r
\end{aligned}
$$

$$
\begin{aligned}
& V \sin ^{r}(x)+r \sin (x) \times \cos (x)=r \\
& V \sin ^{r} x+r \sin x \cos x=r \rightarrow \sin x \cos x=\frac{r-V \sin ^{r} x}{r} \\
& 1-r-V \sin x \Rightarrow r=r \sin r
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sin x=\frac{-1}{\sqrt{\theta}}, \cos x=\frac{-r}{\sqrt{\omega}} \Rightarrow \sin x \cos x=\frac{r}{\Delta} \\
& \text { (r) } \frac{v_{0}}{r q}=\frac{r-v \sin ^{r} x}{r} \Rightarrow \frac{r_{0}}{r_{a}}=r-v \sin c^{r} x \Rightarrow \frac{r_{r}}{r_{q}}=-r \sin ^{c} x \\
& \Rightarrow \sin x=\frac{-r}{\sqrt{1 a}}, \cos x=\frac{-c}{\sqrt{r a}} \Rightarrow \sin x \cos x=\frac{10}{r a} \sqrt{1}
\end{aligned}
$$

