$$f(x) = x + |x|$$
 (۴ $f(x) = |x|$ (۳) $f(x) = -x^{n} + 1$ (۲) $f(x) = x^{n}$ (۱)

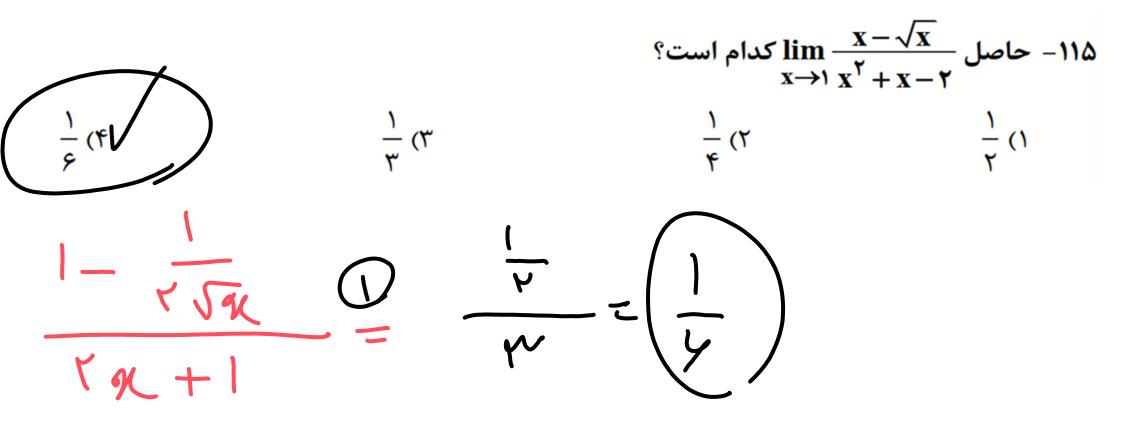
$$\bigvee$$

fog اگر توابع $g = \{(0, V), (V, Q), (V, Q), (Q, Q)\}$ و $f = \{(V, A), (Q, Q), (Q, Q),$

و gof کدام است^۲ 1 (4 ۳) ۲ $f_{0}g_{2}\left(3_{0}\beta\right)_{2}\left(\gamma_{0}\gamma\right)_{2}\left(\gamma_$ Joh = f (0,0)?

١٣ مقدار مينيمم كداميك از توابع زير از سايرين كمتر است؟ $y = \sqrt{r} - \cos \frac{\pi}{x} x$ $y = 1 + \tau \sin \gamma x$ (1) $\pi \sin \frac{x}{x}$ $\frac{1}{2}\cos \pi x$ y = -1-1

است $\cos tx + \cos x$ معادلهٔ t = 0 کدام است $\cos tx + \cos x$ 9(- L-)P(T ۳ (۴ ۵ (۳ rcos Cosq(((cosq)-1) = 0



۱۱۶- اگر f(x)=۳x^۲-۲x+۱)، آنگاه عرض از مبدأ خط مماس بر منحنی تابع f در نقطهای به طول ۲ واقع بر منحنی کدام است؟ 12-8+ 129 791-1 (T) 9(r) = Ð y= 1) fry)=

۱۱۷- نمودار تابع y=f(x) ها را در چند نقطه قطع میکند؟ y=f(|x|) + ۳ محور x ها را در چند نقطه قطع میکند؟ ۱) هیچ 1 (1 f(1x1) = -m۳/ ۲ f 2

م است خطی به طوری که رابطهٔ fofof(x)=ax+ ۳√۲ −۶ برقرار است. اگر تابع f موازی با تابع f باشد فاصلهٔ بین f و _f کدام است؟ $\gamma + \sqrt{\gamma} (r)$ ۲√۲ (۳ 9-091+b $\alpha = \frac{1}{\alpha}$ $y = \left(\frac{1}{\alpha}\right)$ JF_ 7 4 cm)= x+b -ar 'Tr _Y lofent tb ·F-7 AKJY y_N_F+F=0 y-x+1x-x=0

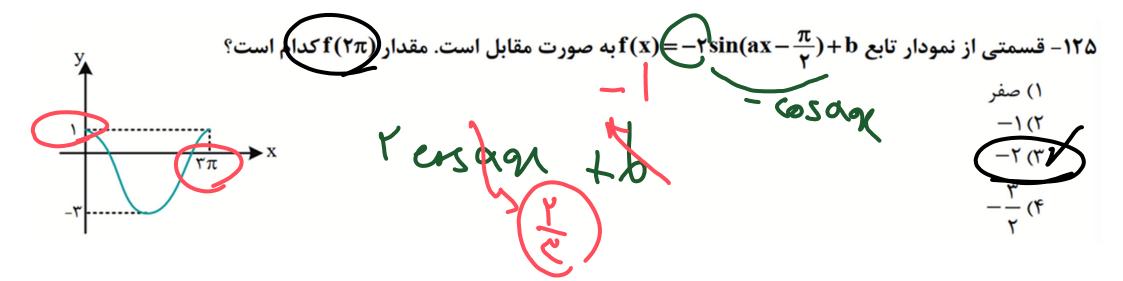
۱۲۰- نمودار تابع ۱<mark>+ ^۳(۲</mark>–۳۲)(x) ر<u>ا</u> ابتدا نسبت به محور عرضها و سپس نسبت به محور طولها قرینه کرده و پس از آن a واحد به راست و (a−1) واحد به بالا منتقل می *ک*نیم تا نمودار تابع g به دست آید. اگر نمودار توابع g و ¹⁻g در نقطهای به عرض ۳ متقاطع باشند، a كدم است؟ 4-9 9 (٣ ۴) ۸ $(\gamma \gamma \gamma) + (\gamma \gamma \gamma)$ (ql-a) 7 +2 (<u>r(al-a)</u>+K $\left(\begin{pmatrix} \chi & (\chi - \sigma) \\ - \chi \end{pmatrix} + \chi \right) + \sigma = 1$

۱۲۱- اگر f(x)=√(x^۲+۴x+۴)(x^۳-۴x^۲)، آنگاه دامنهٔ تابعfog شامل چند عدد صحیح نیست؟ (9(+)) (n) (n, f) ۲ (۲ ۴) مام اعداد صحیح در دامنهٔ تابع fog وجود دارند. an Lanzo 2 1 an - V er an [+,+2) ({-1,22}

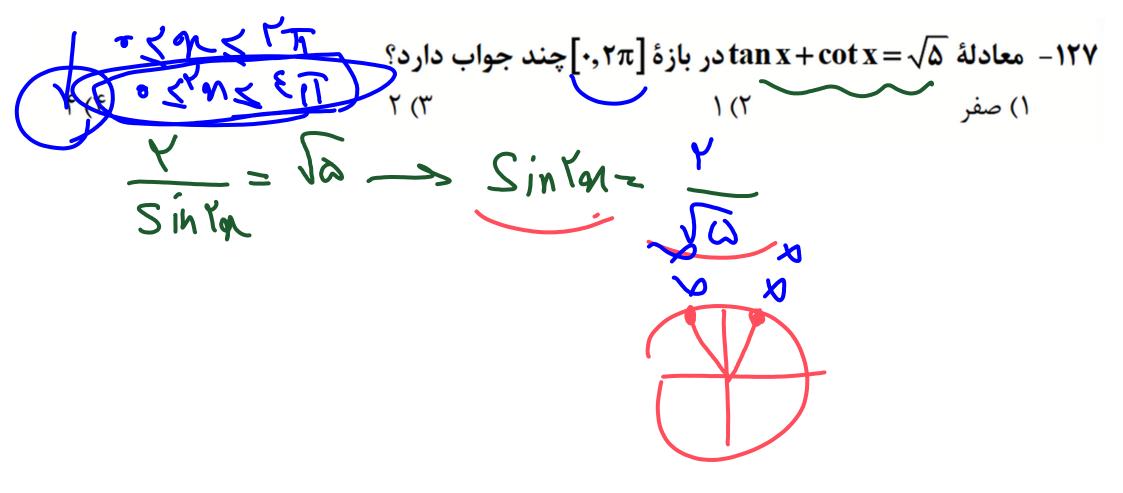
است. اگر f(-4) = f(-4) باشد، دامنهٔ تعریف تابع ره و اکیداً نزولی y=f(x) تابع y=f(x) روی مجموعه اعداد حقیقی تعریف جند عدد طبيعي را شامل نمي شود $g(x) = \sqrt{(x^7 - 4)} f(-x + 4)$ ۴) بیشمار ۳) هيچ ۳ (۲ (nr) (arp 14

1۲۳−(اگر f(x)=9x⁻¹/2) و g⁻¹(x)=۳x−۲ باشد و مجموعهٔ طول نقاطی از منحنی تابع fog که در زیر محور xها قرار کیرند، به صورت بازهٔ (a,b) باشد، بزرگ ترین مقدار (b – a) کدام است؟ ton 0 Log(a) = n - En - V V - D(n-11)(n+V))<°

$$A = Y \Delta \cos F x - Y F \cos F x - Y F \cos T x = x + 1 \sin x +$$

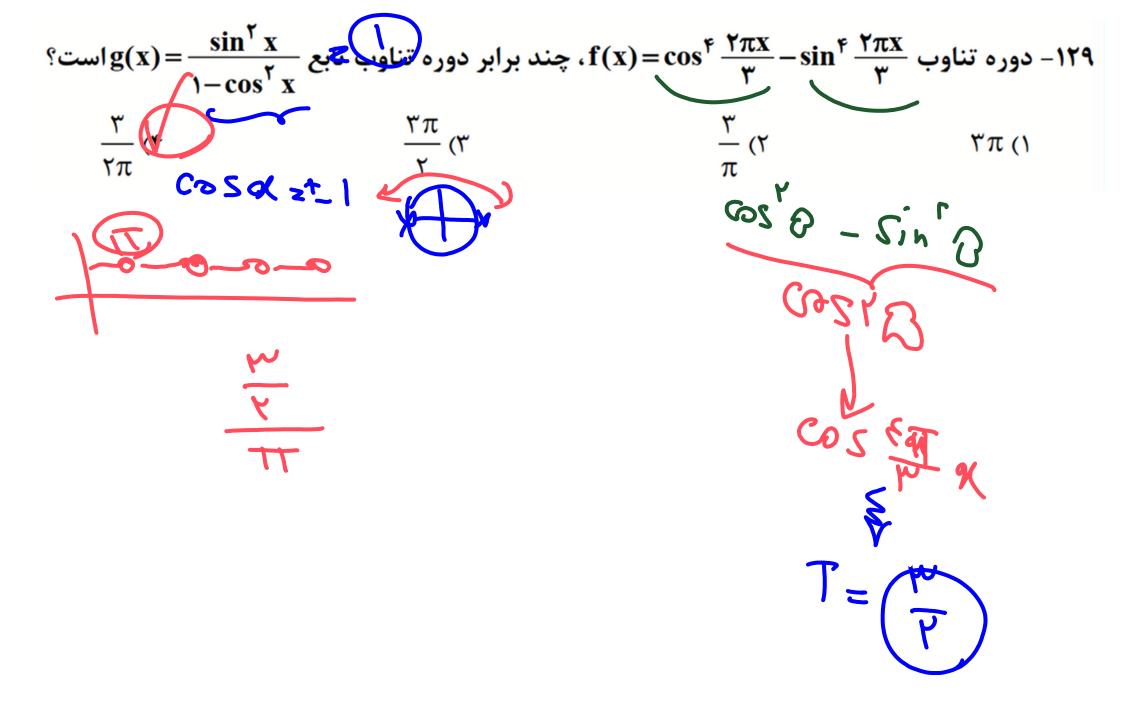


۱۲۶- تابع f تابعی مثلثاتی با دوره تنوب
$$T = \frac{\pi}{F}$$
 است. (ماکزیمم تابع برابر ۵ و مینیمم آن برابر ۹- است. ضابطهٔ f کدام می تواند باشد؟
 $y = -Y - Y \sin \lambda x$ () $y = -Y - Y \cos x$ () $y = -Y - Y \sin \lambda x$ () $y = -Y - Y \sin \lambda x$ ()

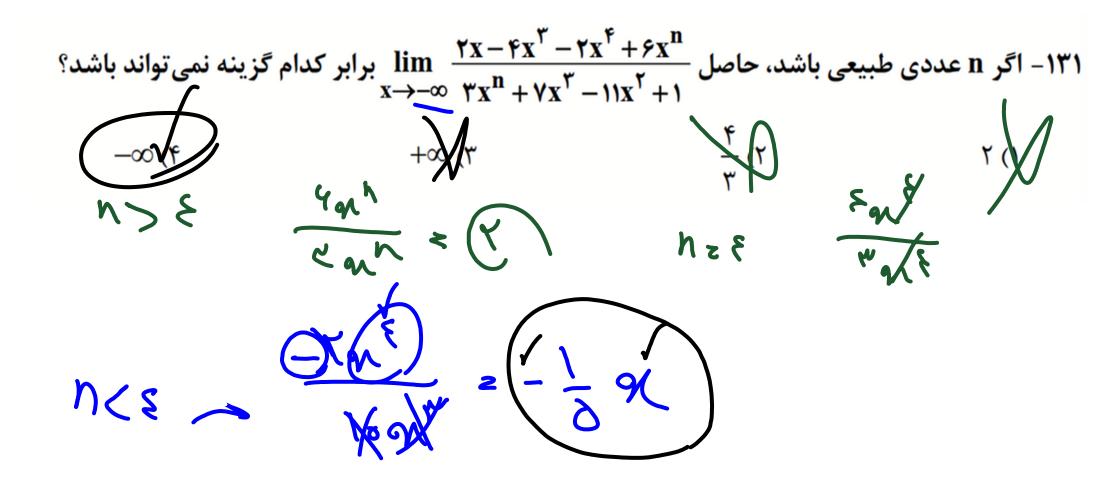


$$F(r) = r = 1$$

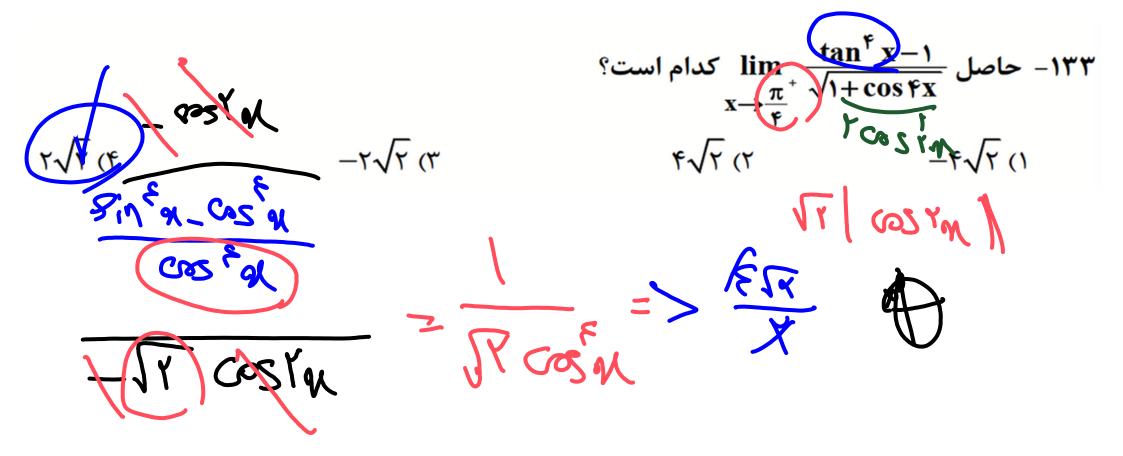
$$F(r) = r = r = 0$$



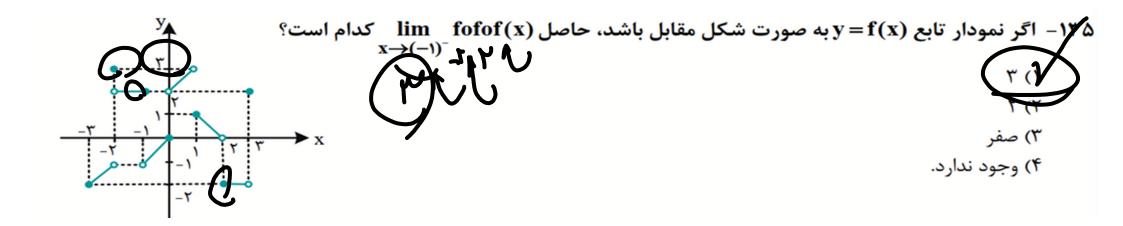
تر تیب برابر با a و b است. اگر باقیماندهٔ تقسیم چندجملهای (p(x -x)و (x+۴) به ۱۳۰– باقیماندهٔ تقسیم چندجملهای (p(x بر (۲ بر ($x^{-1} + 7x - 4$) برابر ($x^{-1} + 7x - 4$) باشد مقدار a^{-1} دام است? ->برابر (۶+x+۹) ۱۶(۲ ۲۹-۲) ۲)۶(۲ ۲۹-۲) ۲)۶(۲ ۲-۹۵) ۲۶ (۳ 9(1)=0 P(-E)z -12



- - اصل
$$\frac{[\cos x]}{\sin x - \sin^{7} x}$$
 النام النت?
 $x \rightarrow \infty$ $x^{7} \left[\frac{1}{x^{7}}\right]^{9} \lim_{x \rightarrow (\frac{\pi}{7})^{+}} \frac{[\cos x]}{\sin x - \sin^{7} x}$
 $x \rightarrow \infty$ (1)

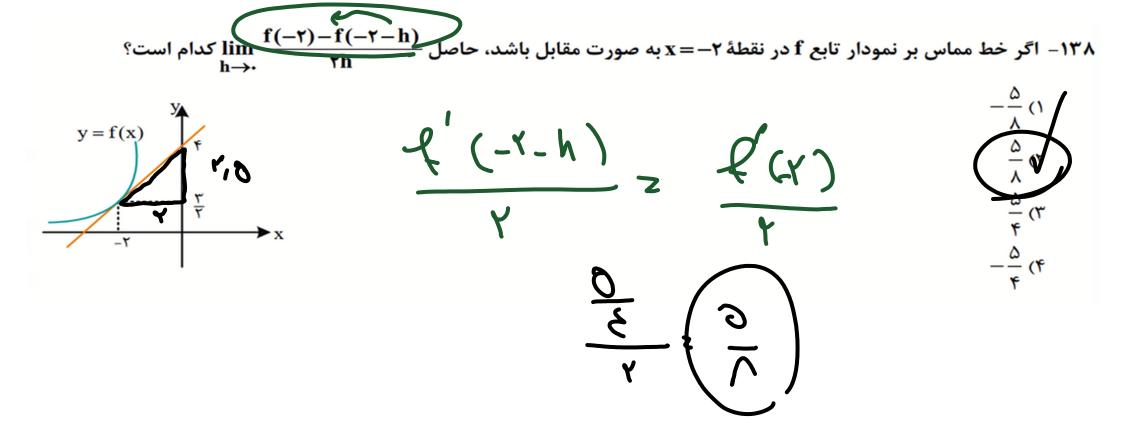


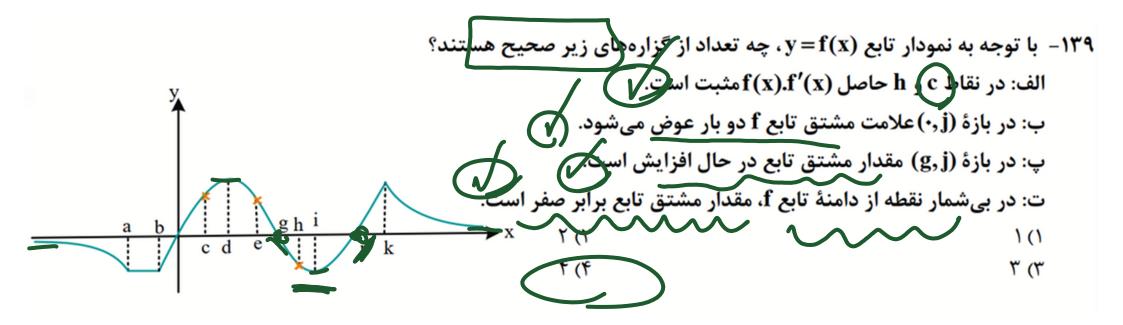
$$I = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac$$



$$\frac{1}{\sqrt{1-1}} = \frac{1}{\sqrt{1-1}} = \frac{1}$$

$$\frac{y_{x \to +\infty}}{y_{x \to +\infty}} \frac{|y_{x} - y_{xx} + fx + 1|}{|y_{x} - y_{xx}| + fx + 1|} \cdot |y_{x} + y_{x} + y_{x}$$





۱۴۰- مقدار مشتق تابع (nx-۲)...(۲x-۲)(۲x-۲)(۲x-۲) در نقطهٔ x = xبرابر f(x) = xاست. n کدام است? f(x) = f(x)14(1 11 (4 YC n-19