

$$
\begin{aligned}
& f(1)=b \Rightarrow-1+r=-4=b \\
& f(a)=a+r \Rightarrow-(a+1)^{r}+r=a+r \\
& (a+1)^{r}+a+1=0 \Rightarrow(a+1)\left((a+1)^{r}+1\right)=0 \\
& a+1=0 \Rightarrow a=-1 \\
& a-b=-1-(-4)=0
\end{aligned}
$$

$$
\begin{gathered}
g(x)=\frac{1}{r} x+r() \\
g(x)=x+r \\
g(x)=-\mu x-r \\
g(x)=-\mu x+\Delta
\end{gathered}
$$

صحيح منفى نيست؟

$$
\begin{aligned}
& \operatorname{fog}\left(x^{r}\right)-f \circ g\left(r^{r}\right)>0 \\
& \operatorname{fog}\left(x^{\mu}\right)>\operatorname{fog}(r x) \\
& \quad x^{r}<r x \Rightarrow x^{r}-r x<0 \Rightarrow x\left(x^{r}-r^{r}\right)<0
\end{aligned}
$$

$$
-r_{r}-1
$$

(1)f

$$
\begin{aligned}
& g(f(x))
\end{aligned}
$$

$$
\begin{aligned}
& 9 \text { (f }
\end{aligned}
$$

$$
a+r b=r r+r\left(\frac{1}{r}\right)=r r
$$

 صورت (a,b)U(c,+o) (

$$
f \circ f= \begin{cases}(-x-r)^{r}+1 & x \geqslant 0 \\ -\left(x^{r}+1\right)^{r}-r & x<0\end{cases}
$$

$$
\begin{gathered}
\frac{-\sqrt{\Delta}}{r}() \\
-\sqrt{\Delta}(r \\
1-\sqrt{\Delta}(r \\
-r(\uparrow
\end{gathered}
$$

$$
\begin{aligned}
& x \geqslant 0: x^{r}+r x+d>-x^{r}+11 \Rightarrow r x^{r}+r x-y>0 \\
& x^{r}+r x-r>0 \quad 1 \\
& x>1
\end{aligned}
$$

$$
\begin{array}{r}
x<0:-x^{r}-1-r>-x-r \Rightarrow x-x-1<0 \Rightarrow x=\frac{1 \pm \sqrt{\partial}}{r} \\
1-\sqrt{\partial}-1=-\sqrt{\partial} \quad a<b \tag{r}
\end{array}
$$

I VY

$$
\begin{aligned}
& (1,1) \\
& f(1)=1 \Rightarrow \sqrt{r+m}=1 \Rightarrow m=-1 \\
& r(r \\
& \text {-r (r } \\
& \Delta(C) \\
& f^{-1}(r)=a \Rightarrow f(a)=r \\
& \sqrt{r a-1}=r \Rightarrow r a-1=9 \\
& r a=10 \Rightarrow a=0
\end{aligned}
$$

$$
\begin{aligned}
& g\left(\left(f^{-1}(a)\right)\right)=r \\
& \frac{x+r}{x-1}=r \Rightarrow x+r=r x-r \Rightarrow r x=4 \Rightarrow r_{-r}^{r(r)} \\
& f_{r(r}^{-1}(a)=r \Rightarrow f(r)=a \Rightarrow r _r=-1
\end{aligned}
$$

1 19
مبدأ مختصات كدام است؟

$$
\begin{aligned}
& f^{-1}(x)=x-1 \\
& x=F(x-1)^{r}-(x-1)-r r \\
& x=r x^{r}-r x+r-x+1-r r \\
& r x^{r}-4 x-r_{0}=0 \Rightarrow x^{r}-r x-1-=0 \\
& (x-\partial)(x+r)=0\left\{\begin{array}{l}
x=0 \Rightarrow y=r \\
x=-r x
\end{array}\right. \\
& d=\sqrt{2 \partial+14}=\sqrt{r 1}
\end{aligned}
$$

.r.

$$
\begin{aligned}
& \underbrace{\left.f^{-1} \circ f \circ g=f^{-1} \circ g\right]} \\
& \text { r() } \\
& g=f^{-1} \circ g \Rightarrow a x+r=\frac{r x+r}{x-r} \\
& -\frac{r T}{9}(V \\
& r(r \\
& -\frac{V}{r}(\varphi \\
& a x^{r}-r a x+r x-4=r x+r \Rightarrow a x^{r}-r a x-1=0 \\
& \Delta=0 \Rightarrow 9 a^{r}+r r a=0 \Rightarrow a(9 a+r r)=0 \\
& a=-\frac{r r}{q}
\end{aligned}
$$

$$
\mathrm{C}
$$

$\left(0<x<\frac{\pi}{r}\right)$ (0 بدام است $\tan x=\sqrt{\frac{1-\sin x}{1+\sin x}}-\sqrt{\frac{1+\sin x}{1-\sin x}}$ حاشد، حاصل

$$
\begin{aligned}
\sqrt{\frac{(1-\sin x)^{r}}{\cos ^{r} x}} & =\frac{1-\sin x}{\cos x} \\
\sqrt{\frac{(1+\sin x)^{r}}{\cos ^{r} x}} & =\frac{1+\sin x}{\cos x}
\end{aligned} \quad \begin{array}{r}
-\sqrt{v}(1 \\
\cos x
\end{array} \quad-r \sin -\frac{-r r}{v}(r) \quad-r \sqrt{v}(r)
$$

$$
\begin{aligned}
& A D-B D=A B \\
& L \\
& \tan 4_{0}=\sqrt{r} \\
& \tan \mu_{0}=\frac{B D}{r}=\frac{\sqrt{r}}{r} \Rightarrow B D=\frac{r \sqrt{r}}{r} \\
& \sqrt{r}() \\
& \frac{\sqrt{r}}{r} \pi d \\
& \frac{r \sqrt{r}}{r}<r \\
& \frac{r \sqrt{r}}{r}(f \\
& \frac{r \sqrt{\mu}}{r}-\frac{r \sqrt{\mu}}{r}=\frac{\sqrt{\mu}}{r}
\end{aligned}
$$

ץr

$$
b \sin (\pi \alpha x-\pi)-1 \quad-\frac{r}{\wedge}(1
$$

$$
a \times b<0
$$

$$
-b \sin (\pi \alpha x)-1-\frac{1}{f} \pi
$$

$$
-|b|-1=-r \Rightarrow|b|=r
$$

$$
b= \pm Y \quad-\frac{V}{4}(\varphi
$$

$$
r \sin (-r x)=-r \sin r x
$$

$$
\begin{aligned}
b=-r \Rightarrow & r \sin (\pi \alpha x)-1 \\
& r \alpha \not X=\frac{\partial \pi}{r} \Rightarrow \alpha=\frac{\partial}{\Lambda}
\end{aligned} \quad \Rightarrow \frac{\alpha}{b}=\frac{-\partial}{14}
$$

$$
\frac{r \pi}{r}
$$

$\begin{array}{r}L \\ -\frac{L}{\pi} \\ \hline r\end{array}$

$$
T=\frac{\pi}{r}
$$

$$
x=-\frac{\pi}{r} \Rightarrow-\frac{\pi}{4}+a=-\frac{\pi}{r}
$$

$r / \Delta(T$

$$
a=\frac{-r \pi}{4}+\frac{\pi}{4}=-\frac{\pi}{r}
$$

$-9(r$

$$
\begin{aligned}
& \text {-/ Affy (1 } \\
& 104 \\
& \cos \left(Y_{x} \Delta r\right)=r \cos ^{r} \Delta r-1=r\left(\frac{q}{r 0}\right)-1=\frac{-V}{r_{0}} \\
& \text { - AFAT (al } \\
& \text { - / nagr (r } \\
& \text { - /ngri (f } \\
& \cos (90+14)=-\sin 14=-\frac{V}{r 0} \Rightarrow \sin 14=\frac{V}{r 0} \\
& \cos r r=1-r \sin ^{r} 14=1-\left(\frac{9 \wedge \times 14}{r \Delta^{r} \times r^{r}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\sin x \\
& \wedge \cos ^{r} x\left(\cos ^{r} x-1\right)+1=\frac{1}{r} \\
& \text { F() } \\
& -r \sin ^{r} r x+1=\frac{1}{r} \Rightarrow \cos r x=\frac{1}{r} \\
& 9(r \\
& \wedge(r) \\
& \text { 1. (}{ }^{(4}
\end{aligned}
$$

$$
\sin ^{r} x=r \sin x^{r} \cos x^{r}
$$

$$
x=\frac{\pi}{r_{r \pi}}
$$

 r-l =r جوابهاى اين معادله بر روى دايره مثلثاتى كدام است؟

$$
\begin{aligned}
& r \sin x+1-r \sin x=r \Rightarrow r \sin ^{r} x-r \sin x+1=0 \quad \begin{array}{l}
\frac{\sqrt{r}}{r}() \\
\sin x=1 \\
\sin x=\frac{1}{r}(r) \\
S=\frac{1}{r} \times \sqrt{r} \times \frac{1}{r} \times \frac{r-\sqrt{r}}{r}(r) \\
\frac{1}{r}-\frac{\sqrt{r}}{r}(r)
\end{array}
\end{aligned}
$$

11

$$
\operatorname{cost} x=1 \Rightarrow t x=r k \pi \Rightarrow x=\frac{k \pi}{r}
$$

$$
r(r
$$

$$
\frac{\pi}{\pi} \cdot \mathbb{H} \frac{r \pi}{r}
$$

$$
\begin{aligned}
\cos r x=-1 \Rightarrow r_{x} & =r k \pi+\pi=(r k+1) \pi \\
x & =\frac{(r k+1) \pi}{\kappa}, \frac{\pi}{r}, \frac{\mu \pi}{r}, \frac{b \pi}{r}, \frac{v \pi}{r}
\end{aligned}
$$

$$
\begin{aligned}
& r-r=1^{+} r(r / \\
& r^{C}-1=r \quad \text { (}{ }^{\text {(}}
\end{aligned}
$$

| |

$$
H \circ p \rightarrow \frac{1}{\frac{1}{r} x^{-\frac{r}{r}}} \xrightarrow{x \rightarrow 1} \frac{1}{\frac{1}{r}} \quad x^{\frac{1^{\swarrow}}{r}} \quad \begin{aligned}
& r(1 \\
& 1(r \\
& r(r) \\
& \\
&
\end{aligned}
$$

r r

$$
\frac{\downarrow}{\sqrt{r}}
$$

مقدار a+b كدام است؟

$$
\begin{aligned}
& \sqrt{r}+r(1 \\
& \sqrt{r}+r(r) \\
& \sqrt{r}+1(r \\
& \sqrt{r}+1(r
\end{aligned}
$$

$$
\begin{aligned}
& r+\frac{1}{x^{r}}=q^{r} \\
& -r+a<0 \Rightarrow a<r^{r}
\end{aligned}
$$

$r(r$
f(${ }^{(}$

$$
a=r \Rightarrow \frac{-9 x+r}{4-\frac{r}{x}}
$$

() صفر

$$
r(r
$$

$$
F(r
$$

$$
\wedge d
$$

$$
\frac{r}{0^{-}}=-\infty x
$$

$$
\begin{aligned}
& x_{r}^{r}-r x^{r}+1=0 \\
& t^{r}-r t+1=0
\end{aligned}\left\{\begin{array}{l}
\Delta>0 \\
t_{1}, t_{r} \\
p>0
\end{array}\right.
$$

$$
-\sqrt{t_{1}}, \sqrt{t_{1}},-\sqrt{t_{r}}, \sqrt{t_{r}} \leqslant
$$

$$
t_{1}+t_{1}+t_{r}+t_{r}=Y\left(t_{1}+t_{r}\right)=\Lambda
$$

هץ ا- با توجه به نمودار توابع f و g، حاصل

$$
\begin{aligned}
& g(x)=-x+r \\
& 1(1 \\
& f(x)=\alpha(x+1)^{r}+r \\
& \text { rir } \\
& -1(\Gamma \\
& f(0)=1 \Rightarrow a+r=1 \Rightarrow a=-r^{r}{ }^{r} \\
& \lim _{x \rightarrow-\infty} \frac{-r(x+1)^{r}+r}{x|-x+r|}=\lim \frac{-r x^{r}}{-x^{r}}=r
\end{aligned}
$$

צヶ $<r$

$$
\begin{array}{r}
\frac{r x^{r}+\partial x-1}{x^{r}+r x+r}>r \Rightarrow r x^{K}+\partial x-1>r / x^{r}+r x+y \\
x>V \quad X
\end{array}
$$

^رّ ا - با توجه به نمودار تابع f(x) كدام كَزينه در مورد اين تابع درست نيست؟

$$
\begin{gathered}
\mathrm{f}^{\prime}(\mathrm{A})<\mathrm{f}^{\prime}(\mathrm{B}) ، \mathrm{f}(\mathrm{~A})>\mathrm{f}(\mathrm{~B}) \\
\mathrm{f}^{\prime}(\mathrm{A})<\mathrm{f}^{\prime}(\mathrm{C}) \cdot \mathrm{f}^{\prime}(\mathrm{B})=\mathrm{f}(\mathrm{D}) \\
\mathrm{f}^{\prime}(\mathrm{C})<\mathrm{f}(\mathrm{~B}) \cdot \mathrm{f}^{\prime}(\mathrm{B})=\mathrm{f}(\mathrm{D}) \\
\mathrm{f}^{\prime}(\mathrm{C}) \geq \mathrm{f}^{\prime}(\mathrm{B}) \geq \mathrm{f}(\mathrm{D}) \geq \mathrm{f}^{\prime}(\mathrm{A})
\end{gathered}
$$

qu أ طبق نمودار خط مماس بر تابع f داده شده است. حاصل

$$
\begin{array}{ll}
\lim _{x \rightarrow \Gamma} \frac{f(x)-f(\kappa)}{x-ז} \times \frac{1}{x+ז} & \frac{1}{\Lambda}(\pi) \\
\frac{1}{4}(\pi \\
\frac{1}{\Lambda} f^{\prime}(F)=\frac{1}{\Lambda}(1)=\frac{1}{\Lambda} & -\frac{1}{4}(f
\end{array}
$$

$$
\begin{array}{r}
r^{\kappa}+0=r^{h \rightarrow 0} h \\
f(1)=0 \quad r(\downarrow) \\
H \circ p \rightarrow \frac{f^{\prime}(r}{1}=r \\
r(r
\end{array}
$$

