

$$
\begin{aligned}
& m\left\langle-\frac{1}{r} \leadsto f(-1,)\right\rangle \leadsto m>-\frac{1}{r} \\
& -\frac{1}{r}<m<-\frac{1}{r} \\
& -\frac{g}{r}<m<-\frac{\varepsilon}{r}
\end{aligned}
$$

$\underbrace{.4 x ~}$
-10 $11 \cdot \mathrm{~d}$

$$
r_{n}^{r}+(\widetilde{r}-\partial) x+m^{r}+r_{m}-9=0
$$

$$
\frac{m^{r}+r_{m}-K}{r^{2}}=\frac{1}{\epsilon} \stackrel{\pi}{\infty} \Delta<0
$$

$$
\alpha^{\mu}+\beta^{\mu}=(\alpha+\beta)^{\mu}-\mu_{\alpha} \beta(\alpha+\beta) S^{\mu} \psi^{\mu} S \phi
$$

$\rho^{\alpha}-S$

$$
\begin{aligned}
& 9 m^{r}-1 m+9+k m+k=0 \\
& +r m+1 r^{r}
\end{aligned}
$$

$$
\mu_{n}^{r}-V_{o n}+\frac{q}{Q}<\frac{1 V}{r}
$$

$$
K_{n} x^{r}-V x-1 E=0
$$

$$
\frac{\Lambda}{r}=\varepsilon-\frac{1}{r}=\frac{-1}{2} \cdot \infty
$$

$$
\begin{aligned}
& 4-m^{r}>0 \\
& \frac{1 V_{-} 1 r_{m}}{1 r-2 m^{r}}=r \leadsto 1 r m^{r}-1 r m-W=\sigma \\
& -2 n^{r}+\operatorname{non}+1=g(n) \\
& \frac{\sqrt{o}}{|a|}=\frac{\sqrt{V}}{r}=\frac{4 \sqrt{r}}{r}
\end{aligned}
$$

$$
\begin{aligned}
t^{r}-\lambda t+V=0 & \longrightarrow t=X=r_{n}^{r}-\partial a n+Y=\frac{\partial}{r} \\
& \rightarrow t=K=r_{a}^{r}-\partial a n+\lambda \rightarrow\left(S=\frac{0}{r}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PB}_{3}^{\mathrm{P}}=(\alpha \beta+\Lambda) \\
& \angle B^{\mu}=\delta(\angle B)+199=\varepsilon 1 B+\varepsilon_{0} \\
& F_{1}\left(\frac{S}{r}\right)+\varepsilon_{0}+\frac{(S)^{r}}{\frac{\partial}{r}}-r p=\frac{4 r v}{\delta}-\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \begin{cases}\rightarrow 0=0 \quad \xi / m^{2}-4 \\
\longrightarrow \Delta>0 \rightarrow \sim\end{cases} \\
& s m_{n}^{r}-4 \varepsilon_{m+t} 04=\varepsilon / \mu-\varepsilon \Lambda \rightarrow m_{2} 14 \\
& \text { 亿 } \\
& m(m-k)<0 \\
& \begin{array}{c}
-14 m+204>0 \\
m 214>
\end{array} \\
& \text { - }\langle m<1< \\
& \text { 1..., } 11
\end{aligned}
$$

$-1 f$ (f
$-\mathrm{a}(\Gamma$
$-r(r$

 (f

$$
-x_{0} \leqslant f(a) \leqslant 1 \varphi
$$

$$
\frac{x-1 r}{\varepsilon} 9+r
$$

$x<\leqslant \rightarrow \Gamma$

$$
h(a)=r_{n}{ }^{r}-r_{a}+\lambda=0 \quad \frac{-\theta}{\delta \sigma}=\frac{n v}{1 r}=\frac{r q}{r}
$$

$$
\begin{aligned}
& -r \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& 1-r(-x+r)-r(-q+c)+r \curvearrowleft=1-\wedge a-r_{n}^{r} \\
& \because \wedge n=19 \rightarrow x=\frac{v}{v} \\
& {\left[\frac{-9}{V}\right]=-r}
\end{aligned}
$$

ها1- كداميك از گزارههاى زير صحيح است؟

