

$$
\begin{aligned}
& r_{x}^{r}-9 x+9+k x-k=\alpha \\
& r_{x^{r}}^{r}-(9-k) x-k+V=0 \\
& \frac{V-k}{r}=1 \quad \frac{V-k}{r}=r \\
& \sum_{k=0} \quad x_{r}=\frac{V-k}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x-\frac{r x}{x+r}\right)^{r}+\frac{4 x^{r}}{x+r^{\mu}}=V \\
& x^{r}-x-r=0 \\
& \left(\frac{x^{r}}{x+r}\right)^{r}+\frac{q x^{r}}{x+r}=V \\
& t^{r}+\frac{x+1}{4 t}-V=0 \xrightarrow{\longrightarrow} \begin{array}{l}
t=-\frac{x^{r}}{x+r} \\
\end{array} \\
& 0<0
\end{aligned}
$$

-99- ريشٔ مساده
$\left(-9, \frac{1}{r}\right)$ (${ }^{(f)}$

(-1, 场
$(-r, 1)(1)$

$$
\partial x+\xi=\partial x+s+r \sqrt{\left(e_{n}+r\right)\left(r_{n}+1\right)}
$$

$$
x^{r}=r x-r<0
$$

$$
-1<x<r
$$

$$
1 r \times \frac{1}{r_{0}}+n \times \frac{1}{r_{0}}=\frac{1}{10} \sim x=\Delta
$$

$$
\begin{align*}
& a x+1=\sqrt{4 x+a} \\
& \alpha^{r} x^{r}+r a x+1=4 a+a \leadsto \alpha^{r} n^{r}+r(q-r) x+1-a=0 \\
& \alpha+B=\frac{1}{r} m^{\frac{-6}{\sigma}} \frac{-r(a-r)}{a^{r}}=\frac{1}{r} \leadsto \alpha^{r}+\varepsilon \alpha \frac{-1 r=0}{\frac{\sigma}{j}} \\
& \alpha \beta=? \rightarrow \frac{1-a}{\alpha^{r}}=\frac{-1}{r}
\end{align*}
$$

$$
\begin{aligned}
& \text { Patrox+1r+M } \sqrt{\left(w_{n+r}\right)\left(p_{n+r}\right)}=a x+\varepsilon+\sqrt{\left(m_{n}+r\right)(g)} \\
& \text { 4) } \begin{aligned}
a+1 \cdot a x+c= & =a x+14 x+x^{2} \\
1 & =a
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \left(-a g \frac{1}{a}\right) \\
& -4 \leq-a<-0 \\
& 0<a \leq y
\end{aligned}
$$

$$
\left\{\begin{aligned}
f(x) & =m x+k \\
g(x) & =-\frac{1}{m} x+k
\end{aligned}\right.
$$

كدام است؟
$4(1$
$9 / \Delta(r$
$\Delta / \Delta(r$

$$
\begin{aligned}
& \operatorname{shoy}=\underbrace{\left(\mu_{m-1} \frac{1}{n}\right)^{-1} x+\underbrace{k+n}_{k=-n} \quad y=x}_{n=1} \\
& f(4)=0 \rightarrow 4+k=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x-\leqslant n}{r_{n}^{r}-x}>0 \leadsto \varepsilon_{n}<x<\tau_{n}{ }^{r} \\
& r_{n}^{r}-\varepsilon n-1=0 \rightarrow n^{-Y}-r n-r_{2} 0 \\
& a=r_{g}-X
\end{aligned}
$$

(
$+b \geq r \sqrt{a b}$

$$
\begin{aligned}
& a+b \geqslant r \sqrt{a b} \\
& x-r+\frac{a}{x-r} \geq r \sqrt{a} \leadsto x-r+\frac{a}{x-r} \geqslant 4 \leadsto x+\frac{q}{x-r} x \\
& f(r)=r+\frac{x^{r}}{x}=\alpha \infty
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow=g D_{p}=D_{g}^{\dot{1}} \\
& \longmapsto R_{f}=K_{g}
\end{aligned}
$$

$x-r$
$9(\mathbf{x}+1)=$

$$
9(x-1)^{n^{2}-1}=\frac{1}{n)^{n}} \frac{x+c}{n-1}=\frac{x-r}{x^{r}+a n+b}
$$

$f(-1)$

$$
\begin{aligned}
& {\left[r_{x}^{r}\right]=r} \\
& r \leqslant r_{x}^{r}<r \rightarrow 1 \leqslant x, ~\left(\sqrt{\frac{r}{r}}\right.
\end{aligned}
$$

$$
\frac{1}{x} \times\left(\frac{\sqrt{r}}{r} \times \times \sqrt{\frac{r}{r}}=r \frac{r}{r}\right.
$$

Ill- توابع f+g و f-g بَ flo $x-g(x)(f$ $x+g(X)$ (r

$$
\begin{array}{r}
x-1<\frac{10}{x+r} \text { no }(x-1)(x+r)<10 \\
x^{r}+x-1 r<0 \\
1 \\
1<n<r
\end{array}
$$

$$
\begin{gathered}
\frac{q u}{r} \leqslant r n+\alpha \\
\xi
\end{gathered}
$$

$$
\frac{x}{r} \leqslant r \leadsto x \leqslant \varepsilon
$$

$$
\begin{aligned}
& r a r+\alpha \alpha r \text { m } \alpha \leqslant-\frac{\alpha}{r}= \\
& \xi=-\frac{\alpha \alpha}{\mu} \\
& \alpha=-4
\end{aligned}
$$

